Abstract

A multi-step purification process to separate metal catalysts and their support materials from mixtures of straight and spiral multi-walled carbon nanotubes (MWNTs), synthesised via fluidised-bed chemical vapour deposition (CVD) is described. The process involves: (i) refluxing as-synthesised bed materials (iron and non-porous alumina supports coated with carbon nanotubes (CNTs) and amorphous carbon) in either HNO 3, HNO 3/H 2SO 4 (v/v=1:3) or H 2SO 4 at each mixture's boiling point for 3, 6 or 12 h, (ii) filtering these samples using a two-stage (2.7 and 0.5 μm) filtration system, (iii) air drying and (iv) temperature selective, gas-phase oxidation in air to remove amorphous carbon. Both low and high purity as-synthesised bed materials (1.7 and 26.3 wt% CNTs, respectively) were used to investigate the process efficiency. Collectively these four steps were successful in removing amorphous carbon, metal catalysts and their alumina supports from the CNTs, improving the CNT purity from 1.7 wt% in the low purity as-synthesised samples to a maximum of 40.0 wt% and from 26.3 wt% in the higher purity feedstocks to 92.9 wt%. In both cases the remaining impurity was unseparated alumina, which remained bound to the CNTs even after treatment with concentrated acids for 12 h. The process has two potential advantages related to the development of large-scale CNT technologies: (i) the use of hydrofluoric acid, which is expensive and unsafe to use in large quantities has been avoided and (ii) the process is inherently scaleable and uses standard process engineering equipment suitable for large-scale CNT purification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.