Abstract

SummaryPlant‐derived renewable resources have the potential to enable the simultaneous generation of high‐value‐added products, such as foods, with energy, such as electricity and thermal power. Much of the heat cogenerated from renewables in power plants has been discarded because of the geographical and temporal gaps in heat supply and demand. In this study, we aim to devise an effective industrial symbiosis (IS) for a regional combined heating and power (CHP) plant utilizing local renewable resources. For the actual region of IS, the island of Tanegashima in Japan was adopted, where sugarcane is planted as a base industry. Through a thermodynamic analysis of the energy flows in a sugar mill, it was demonstrated that large amounts of heat were discarded from the sugar mill, even though the quality of heat was high enough for power generation or other energy demand. This is partly because some of the renewables have been regarded as wastes in the production of foods or other high‐value‐added products. At the same time, scenarios were defined and analyzed on the integrated use of locally available lignocellulosic biomass to increase the operation ratio of an existing bagasse‐based CHP system. Through both periods with and without sugar production, additional heat and power can be made available by decreasing the energy loss and through IS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.