Abstract
Existing models for industrial gas cleaning via temperature-swing adsorption are typically validated against laboratory-scale test units, while industrial cases involve units that are significantly larger, operate with complex gas mixtures, and are cycled for long times. The extent up to which existing model formulations are applicable in industrial units is not well established. Here, we compare simulations with a baseline 1D model at an industrial scale to the online temperature data from steam-regenerated adsorbers in a 32 MW biomass gasification plant. Adsorption of benzene is described using the Dubinin–Radushkevich isotherm, and steam may condense/evaporate but not adsorb. The simulations reproduce the main trends in the industrial data, meaning that they can be used to assess dynamic properties that are not measured, such as the amounts of adsorbates and water. Additional model development is however needed to better represent the effects of complex gas mixtures and water transport and evaporation inside the beds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.