Abstract
PurposeThe purpose of this paper is to present a programming by demonstration (PbD) system based on 3D stereoscopic vision and inertial sensing that provides a cost-effective pose tracking system, even during error-prone situations, such as camera occlusions.Design/methodology/approachThe proposed PbD system is based on the 6D Mimic innovative solution, whose six degrees of freedom marker hardware had to be revised and restructured to accommodate an IMU sensor. Additionally, a new software pipeline was designed to include this new sensing device, seeking the improvement of the overall system’s robustness in stereoscopic vision occlusion situations.FindingsThe IMU component and the new software pipeline allow the 6D Mimic system to successfully maintain the pose tracking when the main tracking tool, i.e. the stereoscopic vision, fails. Therefore, the system improves in terms of reliability, robustness, and accuracy which were verified by real experiments.Practical implicationsBased on this proposal, the 6D Mimic system reaches a reliable and low-cost PbD methodology. Therefore, the robot can accurately replicate, on an industrial scale, the artisan level performance of highly skilled shop-floor operators.Originality/valueTo the best of the authors’ knowledge, the sensor fusion between stereoscopic images and IMU applied to robot PbD is a novel approach. The system is entirely designed aiming to reduce costs and taking advantage of an offline processing step for data analysis, filtering and fusion, enhancing the reliability of the PbD system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Industrial Robot: the international journal of robotics research and application
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.