Abstract

Power factor is a way of measuring the percentage of reactive power in an electrical system. Reactive power represents wasted energy--electricity that does no useful work because the electrical current is out of phase with the voltage. Reactive power is used by inductive loads (such as, motors, transformers, fluorescent lights, arc welders and induction furnaces) to sustain their magnetic fields. Electric systems with many motors exhibit low power factors, increased conductor and transformer losses, and lower voltages. Utilities must supply both active and reactive power and compensate for these losses. Power factor can be improved by the addition of shunt capacitors. Capacitors act in opposition to inductive loads, thereby minimizing the reactive power required to serve them. In raising the power factor, shunt capacitors release energy to the system, reduce system losses, and ultimately decrease power costs. Improving system power factor can reduce reactive and active power losses for both industry and utilities through the addition of shunt capacitors. This Guide Book gives electric utility technical staff, industrial end-users, consultants and BPA employees a step-by-step method for evaluating the cost effectiveness of installing power factor correction capacitors in an industrial plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call