Abstract

Laser technology is finding applications in areas such as high resolution spectroscopy, radar-lidar, velocimetry, or atomic clock where highly coherent tunable high power light sources are required. Offering such performances in the Near- and Middle-IR range, GaAs- and Sb-based Vertical External Cavity Surface Emitting Laser (VeCSEL) technologies [1] seem to be a well suited path to meet the required specifications of demanding applications. Here, we report on the realization of industry ready packaged low noise single frequency VeCSEL devices emitting in the 0.8-1.1 µm and 2-2.5 µm spectral range with high performances thanks to a combination of power-coherence-wavelength tunability and compactness. A fundamental study of the non-linear multimode laser dynamics was carried out to avoid dynamic phase-amplitude instability. We demonstrate both experimentally and theoretically the existence of a deterministic dynamics of the laser field, with either a regular multimode non-stationary regime, or a route to robust single frequency operation. Integration of flat photonics technology allows the realization of devices emitting new coherent light states (VORTEX or dual frequency lasers) for applications to optical tweezers or THz emission, for instance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.