Abstract

This paper describes a novel method for robotic gear chamfering called dual-edge chamfering which can facilitate simultaneous chamfering of the two edges of adjacent gear teeth and overcome typical registration errors arising due to the placement of the workpiece in the robot workspace. Deviations of the robot end-effector trajectory when compared to the nominal trajectory due to registration errors are discussed first; such trajectory deviations caused by typical registration errors due to gear center translation and rotation are quantified. Dual-edge chamfering process is described and an efficient trajectory design strategy is developed by considering the kinematic constraints imposed by the profiles of the gear edge and the abrasive tool. The dual-edge chamfering robot trajectory is facilitated by a simple procedure for identifying the gear and gear root centers by employing the robot. To execute the dual-edge chamfering trajectory, an efficient motion/force control strategy that includes active compliance from the tool mounted on the robot is proposed. A number of real-time experiments are conducted to evaluate the proposed method by employing a commercial six degree-of-freedom robot. Two types of large cylindrical metal gears are utilized for testing, an external gear with teeth on the outside and an internal gear with teeth on the inside. In addition to these, two different robotic compliant tools with axial and radial compliance are tested. A representative sample of the experimental results are presented and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call