Abstract
Deep learning (DL) has been known as one of the effective techniques for building data-driven fault detection methods. The successful DL-based methods require the condition that massive labeled data are available, but this is sometimes an inevitable obstacle in real industrial environments. As one of the solutions, autoencoders (AEs) are widely adopted since AEs can extract features from unlabeled data. However, some challenges in AE-based fault detection methods remain, such as the design of encoder architecture, the computational cost, and the usage of the limited labeled data. This paper proposes a new industrial fault detection method through learning instance-level representation of time-series based on the self-supervised contrastive learning framework (SSCL). The proposed method uses dilated-causal-convolution-based encoder-only architecture to extract the information from industrial time-series data. A new data augmentation method for time-series data is proposed based on the temporal distance distribution, which is used to construct positive pairs in SSCL. Moreover, the encoder is alternately trained by the new weighted contrastive loss and the traditional classification loss. Finally, the experiments are conducted on the industrial data set and a semi-physical system, showing the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.