Abstract

In the recent years, deep learning has been widely used in process monitoring due to its strong ability to extract features. However, with the increasing layers of the deep network, the compression of features by the deep model will lead to the loss of some valuable information and affect the model’s performance. To solve this problem, a fault detection method based on a discriminant enhanced stacked auto-encoder is proposed. An enhanced stacked auto-encoder network structure is designed, and the original data is added to each hidden layer in the model pre-training process to solve the problem of information loss in the feature extraction process. Then the self-encoding network is combined with spectral regression kernel discriminant analysis. The fault category information is introduced into the features to optimize the features and enhance the discrimination of the extracted features. The Euclidean distance is used for fault detection based on the extracted features. From the Tennessee Eastman process experiment, it can be found that the detection accuracy of this method is about 9.4% higher than that of the traditional stacked auto-encoder method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call