Abstract
A potential bio-adsorbent material for removing Rhodamine B (RB) from aqueous solution is Ru-MOF@FGA/CA beads. The adsorption capability of the material is probably enhanced by the use of a natural substance made of food-grade algae (FGA) and calcium alginate (CA), which has been cross-linked and loaded with ruthenium metal-organic frameworks (Ru-MOF). The Ru-MOF@FGA/CA beads were analyzed by XPS, PXRD, FT-IR, and SEM. The nitrogen adsorption-desorption isotherm analysis of the Ru-MOF@FGA/CA beads before and after the adsorption of RB revealed that had a surface area of 682 m2/g, a pore size of 2.92 nm, and a pore volume of 1.62 cc/g, that decreased after adsorption as the surface area reduced to 468.62 m2/g, while the pore volume reduced to 0.76 cc/g. indicating that the RB molecules occupied the available space within the pores of the material. The decrease in both surface area and pore volume specifies that the Ru-MOF@FGA/CA beads' pores were able to effectively adsorb the RB molecules. The adsorption of RB against the Ru-MOF@FGA/CA beads is affected by pH, adsorbent dose, starting RB concentration, and salinity. Controlling these factors can enhance the adsorption capability and effectiveness of the beads for RB removal. With an adsorption energy of 22.6 kJ/mol, the adsorption of RB onto the Ru-MOF@FGA/CA beads was determined to be a chemisorption process, demonstrating a strong bond among the adsorbent and the adsorbate. The pseudo-second-order kinetics and Langmuir isotherms were used to suit the adsorption process. Because the adsorption procedure was endothermic, it increased as the temperature increased. By using this information, the adsorption conditions may be improved, and the beads' ability to absorb RB can be increased. Up to six reuses of the Ru-MOF@FGA/CA beads are possible without affecting their chemical makeup and maintaining analogous PXRD and FT-IR data after each reuse. The adsorption process can be optimized through the application of the Box–Behnken design (BBD) approach and may entail H-bonding, electrostatic forces, n-π stacking, and pore filling. The exceptional stability of the beads makes them useful for creating long-lasting and efficient adsorbents that remove contaminants from water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.