Abstract

Characterization of modern cyber–physical Industrial Control System (ICS) devices is critical to the evaluation of their security posture and an understanding of the underlying industrial processes with which they interact. In this work, we address two related ICS device identification tasks: (1) separating ICS from non-ICS devices and (2) identifying specific ICS device types. We propose two distinct methods (one based on the existing IP2Vec method, and a novel traffic-features-based method) for achieving the first task. For transferability of the first task between two datasets, the traffic-features-based method performs significantly better (75% overall accuracy) compared to IP2Vec (22.5% overall accuracy). We further propose a novel method called DNP2Vec to address the second task. DNP2Vec is evaluated on two different datasets and achieves perfect multi-class classification accuracy (100%) for both datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.