Abstract

• An industrial blockchain-based PLM framework is proposed for achieving the openness, interoperability and decentralization in era of industry 4.0 . • Customized blockchain-information-service-enabled is used for multi-source and heterogeneous data automatically processing and broadcasting. • Smart contract-enabled transaction executions and alert services facilitate product flows in the product lifecycles. • Four blockchain-enabled key services are illustrated, including co-design and co-creation service, QAT 2 service, proactive maintenance service and regulated recycling service. Product lifecycle management (PLM) aims to seamlessly manage all products and information and knowledge generated throughout the product lifecycle for achieving business competitiveness. Conventionally, PLM is implemented based on standalone and centralized systems provided by software vendors. The information of PLM is hardly to be integrated and shared among the cooperating parties. It is difficult to meet the requirements of the openness, interoperability and decentralization of the Industry 4.0 era. To address these challenges, this paper proposed an industrial blockchain-based PLM framework to facilitate the data exchange and service sharing in the product lifecycle. Firstly, we proposed the concept of industrial blockchain as the use of blockchain technology in the industry with the integration of IoT, M2M, and efficient consensus algorithms. It provided an open but secured information storage and exchange platform for the multiple stakeholders to achieve the openness, interoperability and decentralization in era of industry 4.0. Secondly, we proposed and developed customized blockchain information service to fulfill the connection between a single node with the blockchain network. As a middleware, it can not only process the multi-source and heterogeneous data from varied stages in the product lifecycle, but also broadcast the processed data to the blockchain network. Moreover, smart contract is used to automate the alert services in the product lifecycles. Finally, we illustrated the blockchain-based application between the cooperating partners in four emerging product lifecycle stages, including co-design and co-creation, quick and accurate tracking and tracing, proactive maintenance, and regulated recycling. A simulation experiment demonstrated the effectiveness and efficiency of the proposed framework. The results showed that the proposed framework is scalable and efficient, and hence it is feasible to be adopted in industry. With the successful development of the proposed platform, it is promising to provide an effective PLM for improving interoperability and cooperation between stakeholders in the entire product lifecycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.