Abstract

The aim of this work was to study the feasibility of using orange tree pruning to obtain lignocellulose nanofibers (LCNFs) and their application in paperboard recycling process. The orange tree pruning was treated with an environmentally friendly process (13% NaOH on dry matter, at liquid/solid ratio of 8, 170 °C and 40 min). The cellulosic pulp obtained was used for the isolation of LCNFs by means of two different pretreatments, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated (TO-LCNFs) and mechanical refining (Mec-LCNFs), followed by high-pressure homogenization treatment. The reinforcement effect produced by the LCNF addition on paperboard recycled fiber was compared with other conventional industrial techniques such as chemical addition and mechanical beating. It was shown that TEMPO-mediated oxidation produces a greater delamination in fiber during its nanofibrillation, obtaining smaller width nanofibers with greater specific surface. The LCNF addition, especially TO-LCNFs, presents reinforcement effects comparable to those achieved by mechanical beating for the different mechanical properties, with the advantage of not modifying the fiber physically and increasing the numbers of recycling cycles. The economic analysis of both treatments shows that despite the Mec-LCNF cost is slightly higher, it is presented as an alternative to mechanical beating for use in paperboard recycling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.