Abstract

Wireless power delivery has been a dream technology for applications in medical science, security, radio frequency identification (RFID), and the internet of things, and is usually based on induction coils and/or antenna. Here, a new approach is demonstrated for wireless power delivery by using the Maxwell's displacement current generated by an electrodeless triboelectric nanogenerator (TENG) that directly harvests ambient mechanical energy. A rotary electrodeless TENG is fabricated using the contact and sliding mode with a segmented structure. Due to the leakage of electric field between the segments during relative rotation, the generated Maxwell's displacement current in free space is collected by metal collectors. At a gap distance of 3 cm, the output wireless current density and voltage can reach 7 µA cm-2 and 65 V, respectively. A larger rotary electrodeless TENG and flexible wearable electrodeless TENG are demonstrated to power light-emitting diodes (LEDs) through wireless energy delivery. This innovative discovery opens a new avenue for noncontact, wireless energy transmission for applications in portable and wearable electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call