Abstract

This work shows the computational simulation of the fluid dynamics of inductor discs (patent pending reception number MX/E/2021/002395) applied to vertical axis wind turbines (VAWT). These inductor discs have a unique and innovative design that can be classified as wind concentrators. The purpose of these devices is to increase wind velocity at the wind turbine entrance; this increase in velocity exponentially boosts the mechanical power of the turbine, according to Betz's theory, increasing the electrical energy production of the turbine and, at the same time, reducing its dimensions. The objective of this investigation is to carry out the fluid dynamic simulation (CFD) of two of the inductor disc geometries: an elliptical one and a truncated conical one, varying the entrance wind velocities of the VAWT from 3 m/s to 12 m/s. The proposed methodology consists of employing a CFD software (ANSYS) to model the two inductor disc geometries and extract them from a static control volume. Mesh this volume, establish boundary conditions, and vary wind velocities to carry out the fluid dynamic analysis. Finally, the obtained velocities are compared at different representative points of both geometries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.