Abstract
An inductively powered passive transmitter architecture for wireless sensornodes is presented in this paper. The intended applications are inductively powered internally illuminated photoreactors. The application range of photoreactors is wide. They are used, e.g., for microalgae cultivation or for photochemistry, just to name two important fields of use. The inductive powering system used to transmit energy to the wireless internal illumination system is to be additionally used to supply the here presented transmitter. The aim of expanding the named internal illuminated photoreactors with wireless sensors is to obtain a better insight into the processes inside it. This will be achieved by measuring essential parameters such as, e.g., the temperature, pH value, or gas concentrations of the medium inside the reactor, which for algal cultivation would be water. Due to the passive architecture of the transmitter electronics, there is no need for batteries, and therefore, no temporal limitations in their operational cycle are given. The data transmission is also implemented using the inductive layer in the low frequency range. The data transmitting coil and the energy receive coil are implemented as one and the same coil in order to avoid interference and unwanted couplings between them, and in order to save weight and space. Additionally, the transmitter works in a two-step alternating cycle: the energy harvesting step, followed by the data transmission step. The measured values are sent using on-off keying. Therefore, a Colpitts oscillator is switched on and off. The circuit is simulated using SPICE simulations and consequentially implemented as a prototype in order to perform practical analyses and measurements. The feasibility of our transmitter is therefore shown with the performed circuit simulations, and practically, by testing our prototype on an internal illuminated laboratory scaled photoreactor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.