Abstract
A one-dimensional analysis of electron heating process in a weakly magnetized, inductively coupled plasma (MICP) is presented. It is found that the main difference in the heating process of a MICP from that of a usual unmagnetized ICP is in that circularly polarized wave modes can exist in the plasma. The right handed circularly polarized wave (R-wave) can propagate into the plasma and its amplitude can be enhanced by cavity resonance effect at an appropriate chamber length and external magnetic field strength. The enhanced R-wave amplitude can raise the heating efficiency significantly. It is also found that a bounce cyclotron-resonance effect can exist, which, however, is not as significant as the cavity resonance effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.