Abstract

Oblate field-reversed configuration (FRC) plasmas are sustained for up to 350 micros, or approximately 15 poloidal flux-confinement times, in the magnetic reconnection experiment. The diamagnetic equilibrium is maintained in argon plasmas as a balance of an inward pinch and outward diffusion. Numerical and analytic models show that the observed stability is provided by a combination of plasma shaping, magnetic diffusion, and finite-Larmor radius effects. FRCs formed with lighter ions, which benefit less from these stabilizing effects, succumb to rapid instability and cannot be sustained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.