Abstract

The impressive recent performance of large language models has led many to wonder to what extent they can serve as models of general intelligence or are similar to human cognition. We address this issue by applying GPT-3.5 and GPT-4 to a classic problem in human inductive reasoning known as property induction. Over two experiments, we elicit human judgments on a range of property induction tasks spanning multiple domains. Although GPT-3.5 struggles to capture many aspects of human behavior, GPT-4 is much more successful: for the most part, its performance qualitatively matches that of humans, and the only notable exception is its failure to capture the phenomenon of premise non-monotonicity. Our work demonstrates that property induction allows for interesting comparisons between human and machine intelligence and provides two large datasets that can serve as benchmarks for future work in this vein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.