Abstract
Advances in microfabrication have allowed the integration of large numbers of electrodes onto one platform. The small size and high channel density of these microelectrode arrays which promise improved performance of a neural prosthesis also complicate the design of an inductive link to achieve efficient powering and communication with the implant. Stimulating or recording with many channels requires high data rate transmission. At the same time, power must be transmitted to the implanted device without exceeding power dissipation limits within the body. Using conventional design techniques, achieving all of these competing requirements simultaneously can require many time consuming iterations. It is proposed that a transcutaneous power and data link can be optimized to meet system level design parameters (power dissipation, data rate, secondary voltage, etc.) by having an analytic understanding of the interacting link level design parameters (receiver radius, carrier frequency, number of turns, implant location, etc.). We demonstrated this technique with the design of a transcutaneous power and data link for an intracortical visual prosthesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.