Abstract

We use pulsed inductive microwave magnetometry to study the precessional magnetization dynamics of the free layer in CoFeB/MgO/CoFeB based magnetic tunneling junction stacks with varying MgO barrier thickness. From the field dependence of the precession frequency we are able to derive the uniaxial anisotropy energy of the free layer and the exchange coupling between the free and the pinned layer. Furthermore the field dependence of the effective damping parameter is derived. Below a certain threshold barrier thickness we observe an increased effective damping for antiparallel orientation of free and pinned layer which would inhibit reversible low current density spin torque magnetization reversal. Such inductive measurements, in combination with wafer probe station based magneto transport experiments, allow a fast determination of the optimum tunnel barrier thickness range for spin torque memory applications in a lithography free process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call