Abstract
The kinetics of the initial stage of crystallization of one-component gas hydrates in aqueous solutions are analyzed. The temporal evolution of the volume of hydrate crystallized and the moles of gas consumed are determined. Expressions are derived for the supersaturation dependence of the hydrate crystallite growth rate and the induction time in hydrate crystallization. These expressions are used for revealing how additives in the solution that act as kinetic inhibitors of hydrate crystallization can affect the induction time of the process. The results obtained are applied to crystallization of methane, ethane and cyclopropane hydrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.