Abstract

Toll-like receptor 2 (TLR2) is a member of TLR family. It recognizes a wide range of bacteria and their products, and is involved in inducing innate immune responses. In this article, we reported inductive expression of TLR2 and myeloid differentiation primary response gene 88 (MyD88)-dependent signaling in the Indian major carp, mrigal (Cirrhinus mrigala) which is highly commercially important fish species in the Indian subcontinent. Ontogeny analysis of TLR2, MyD88 and TRAF6 (TNF receptor associated factor 6) genes by quantitative real-time PCR (qRT-PCR) revealed constitutive expression of these genes in all embryonic developmental stages, indicating their involvement in embryonic innate immune defense system in fish. Tissue specific expression analysis of these genes by qRT-PCR showed their wide distribution in various organs and tissues. Highest expression of TLR2 was in gill, MyD88 in liver and TRAF6 was in kidney. Inductive expression of TLR2, MyD88 and TRAF6 genes were observed following peptidoglycan (PGN)-treatment, and Streptococcus uberis and Aeromonas hydrophila infections. Expression of interleukin (IL)-8 and TNF-α in various organs were significantly enhanced by PGN-treatment and bacterial infections, and were closely associated with TLR2 induction. These findings together highlighted the contribution of TLR2 in augmenting innate immunity in fish, and indicated it's important role in immune surveillance of various organs during pathogenic invasion. This study will enrich the information in understanding the innate immune mechanism in fish, and will be helpful in developing preventive measures against infectious diseases in fish.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.