Abstract

BackgroundTobacco smoking is associated with lung cancer and other respiratory diseases. However, little is known about the global molecular changes that precede the appearance of clinically detectable symptoms. In this study, the effects of mainstream tobacco smoke (MTS) on global transcription in the mouse lung were investigated.MethodsMale C57B1/CBA mice were exposed to MTS from two cigarettes daily, 5 days/week for 6 or 12 weeks. Mice were sacrificed immediately, or 6 weeks following the last cigarette. High density DNA microarrays were used to characterize global gene expression changes in whole lung. Microarray results were validated by Quantitative real-time RT-PCR. Further analysis of protein synthesis and function was carried out for a select set of genes by ELISA and Western blotting.ResultsGlobally, seventy nine genes were significantly differentially expressed following the exposure to MTS. These genes were associated with a number of biological processes including xenobiotic metabolism, redox balance, oxidative stress and inflammation. There was no differential gene expression in mice exposed to smoke and sampled 6 weeks following the last cigarette. Moreover, cluster analysis demonstrated that these samples clustered alongside their respective controls. We observed simultaneous up-regulation of interleukin 6 (IL-6) and its antagonist, suppressor of cytokine signalling (SOCS3) mRNA following 12 weeks of MTS exposure. Analysis by ELISA and Western blotting revealed a concomitant increase in total IL-6 antigen levels and its downstream targets, including phosphorylated signal transducer and activator of transcription 3 (Stat3), basal cell-lymphoma extra large (BCL-XL) and myeloid cell leukemia 1 (MCL-1) protein, in total lung tissue extracts. However, in contrast to gene expression, a subtle decrease in total SOCS3 protein was observed after 12 weeks of MTS exposure.ConclusionGlobal transcriptional analysis identified a set of genes responding to MTS exposure in mouse lung. These genes returned to basal levels following smoking cessation, providing evidence to support the benefits of smoking cessation. Detailed analyses were undertaken for IL-6 and its associated pathways. Our results provide further insight into the role of these pathways in lung injury and inflammation induced by MTS.

Highlights

  • Tobacco smoking is associated with lung cancer and other respiratory diseases

  • We demonstrate an increase in total protein levels of interleukin 6 (IL-6) and its downstream targets basal cell-lymphoma extra large (BCL-XL) and myeloid cell leukemia 1 (MCL-1)

  • Genes that are implicated in xenobiotic metabolism, such as Cyp1a1, (24-fold), cytochrome P450, family 1, subfamily b, polypeptide 1 (Cyp1b1, 7-fold), Nqo1, (3-fold) and aryl-hydrocarbon receptor repressor (Ahrr, 3-fold), showed the greatest increase in expression in smoke-exposed groups (Table-1)

Read more

Summary

Introduction

Tobacco smoking is associated with lung cancer and other respiratory diseases. In addition to lung cancers, tobacco smoke is linked to other respiratory diseases including chronic obstructive pulmonary disease (COPD) [4,5] and emphysema [6,7]. NF-kB and AP-1 regulate many of the inflammatory genes that are over-expressed in response to tobacco smoke [18,19]. These studies have considerably increased our understanding of the effects of smoking on health. These studies do not provide information on global changes in gene expression in target tissues. The exact mechanisms by which smoking leads to disease in an individual, or the alterations in expression of specific genes that determine this susceptibility, are not entirely elucidated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.