Abstract

The two optical forms of aldohexose galactose differing at the C-1 position, alpha-D-galactose and beta-D-galactose, are widespread in nature. The two anomers also occur in di- and polysaccharides, as well as in glycoconjugates. The anomeric form of D-galactose, when present in complex carbohydrates, e.g., cell wall, glycoproteins, and glycolipids, is specific. Their interconversion occurs as monomers and is effected by the enzyme mutarotase (aldose-1-epimerase). Mutarotase and other D-galactose-metabolizing enzymes are coded by genes that constitute an operon in Escherichia coli. The operon is repressed by the repressor GalR and induced by D-galactose. Since, depending on the carbon source during growth, the cell can make only one of the two anomers of D-galactose, the cell must also convert one anomer to the other for use in specific biosynthetic pathways. Thus, it is imperative that induction of the gal operon, specifically the mutarotase, be achievable by either anomer of D-galactose. Here we report in vivo and in vitro experiments showing that both alpha-D-galactose and beta-D-galactose are capable of inducing transcription of the gal operon with equal efficiency and kinetics. Whereas all substitutions at the C-1 position in the alpha configuration inactivate the induction capacity of the sugar, the effect of substitutions in the beta configuration varies depending upon the nature of the substitution; methyl and phenyl derivatives induce weakly, but the glucosyl derivative does not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.