Abstract
Pseudomonas fluorescens strain CHA0, which suppresses various plant diseases caused by soilborne pathogens, also can restrict leaf disease. Plants of Nicotiana glutinosa and of two cultivars of N. tabacum were grown in autoclaved natural soil previously inoculated with strain CHA0. After 6 wk, all the plants tested showed resistance in leaves to infection with tobacco necrosis virus (TNV) to the same extent as plants previously immunized with TNV (induced resistance control). Polyacrylamide gel electrophoresis and enzyme assays showed that the same amount of PR proteins (Pr-1 group proteins, beta-1,3-glucanases, and endochitinases) was induced in the intercellular fluid of leaves of plants grown in the presence of strain CHA0 as in the intercellular fluid of leaves of plants immunized by a previous TNV inoculation on a lower leaf. Strain CHA0 was reisolated from the roots but could not be detected in stems or leaves. Strain CHA96, a gacA (global activator)-negative mutant of strain CHA0 defective in the production of antibiotics and in the suppression of black root rot of tobacco, had the same capacity to induce PR proteins and resistance against TNV as did the wild-type strain. CHA400, a pyoverdine-negative mutant of strain CHA0 with the same capacity to suppress black root rot of tobacco and take-all of wheat as the wild-type strain, was able to induce PR proteins but only partial resistance against TNV. P3, another P. fluorescens wild-type strain, does not suppress diseases caused by soilborne pathogens and induced neither resistance nor PR proteins in tobacco leaves. Root colonization of tobacco plants with strain CHA0 and its derivatives as well as leaf infection with TNV caused an increase in salicylic acid in leaves. These results show that colonization of tobacco roots by strain CHA0 reduces TNV leaf necrosis and induces physiological changes in the plant to the same extent as does induction of systemic resistance by leaf inoculation with TNV
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.