Abstract

Cyclodipeptides, formed from two amino acids by cyclodehydration, are produced naturally by many organisms, and are known to possess a large number of biological activities. In this study, we found that cyclo (l-Pro-l-Pro) and cyclo (d-Pro-d-Pro) (where Pro is proline) could induce defence responses and systemic resistance in Nicotiana benthamiana. Treatment with the two cyclodipeptides led to a reduction in disease severity by Phytophthora nicotianae and Tobacco mosaic virus (TMV) infections compared with controls. Both cyclopeptides triggered stomatal closure, induced reactive oxygen species production and stimulated cytosolic calcium ion and nitric oxide production in guard cells. In addition, the application of cyclodipeptides significantly up-regulated the expression of the plant defence gene PR-1a and the PR-1a protein, and increased cellular salicylic acid (SA) levels. These results suggest that the SA-dependent defence pathway is involved in cyclodipeptide-mediated pathogen resistance in N. benthamiana. We report the systemic resistance induced by cyclodipeptides, which sheds light on the potential of cyclodipeptides for the control of plant diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.