Abstract
Differentiation of confluent 3T3-L1 preadipocytes to adipocytes in the presence of dexamethasone and 1-methyl-3-isobutylxanthine for 7 days resulted in a 4-fold increase in the incorporation of acetoacetate-carbon into fatty acids and in the activity of 3-oxoacid CoA-transferase, which catalyzes the first committed step in the conversion of acetoacetate to acetoacetyl-CoA. The increase in enzyme activity was due to an increase in the cellular content of the enzyme, as determined by immunoprecipitation of 3-oxoacid CoA-transferase from 3T3-L1 preadipocytes and adipocytes with rabbit antiserum specific for the rat brain enzyme. The 4-fold increase in enzyme activity was accompanied by a 2.7-fold increase in the average relative rate of synthesis of 3-oxoacid CoA-transferase (between Days 4 and 7). Additionally, the half-life of the enzyme increased 1.9-fold relative to the half-life of total protein, indicating that changes in both synthesis and degradation of 3-oxoacid CoA-transferase are responsible for alterations in its activity. Previous studies on the turnover of other enzymes that are induced during differentiation of 3T3-L1 cells have assigned changes in enzyme synthesis as the primary or sole mechanism for changes in enzyme activity. This report provides the first documentation that both enzyme synthesis and degradation play a role in regulating the enzyme activity of an enzyme during differentiation of 3T3-L1 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.