Abstract

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are hepatic manifestations of the metabolic syndrome. Many currently used animal models of NAFLD/NASH lack clinical features of either NASH or metabolic syndrome such as hepatic inflammation and fibrosis (e.g., high-fat diets) or overweight and insulin resistance (e.g., methionine-choline-deficient diets), or they are based on monogenetic defects (e.g., ob/ob mice). In the current study, a Western-type diet containing soybean oil with high n-6-PUFA and 0.75% cholesterol (SOD + Cho) induced steatosis, inflammation and fibrosis accompanied by hepatic lipid peroxidation and oxidative stress in livers of C57BL/6-mice, which in addition showed increased weight gain and insulin resistance, thus displaying a phenotype closely resembling all clinical features of NASH in patients with metabolic syndrome. In striking contrast, a soybean oil-containing Western-type diet without cholesterol (SOD) induced only mild steatosis but not hepatic inflammation, fibrosis, weight gain or insulin resistance. Another high-fat diet, mainly consisting of lard and supplemented with fructose in drinking water (LAD + Fru), resulted in more prominent weight gain, insulin resistance and hepatic steatosis than SOD + Cho, but livers were devoid of inflammation and fibrosis. Although both LAD + Fru- and SOD + Cho-fed animals had high plasma cholesterol, liver cholesterol was elevated only in SOD + Cho animals. Cholesterol induced expression of chemotactic and inflammatory cytokines in cultured Kupffer cells and rendered hepatocytes more susceptible to apoptosis. In summary, dietary cholesterol in the SOD + Cho diet may trigger hepatic inflammation and fibrosis. SOD + Cho-fed animals may be a useful disease model displaying many clinical features of patients with the metabolic syndrome and NASH.

Highlights

  • Apart from being the central organ for maintenance of glucose homeostasis [1], the liver plays a pivotal role in lipid metabolism [2]

  • Hepatic steatosis is one feature of nonalcoholic fatty liver disease (NAFLD), which can be complicated by low-grade inflammation and fibrosis in nonalcoholic steatohepatitis (NASH), which in the long run can give rise to liver cirrhosis and hepatocellular carcinoma [3]

  • Animals were fed [1] a standard chow diet (8% of the calories derived from fat) as a control (STD), [2] a Western-type diet with 43% of the calories derived from soybean oil (25 g/100 g) with a high content of n-6-PUFAs such as linoleic acid (13,2 g/100 g), [3] a Western-type diet similar to [2] that contained 0.75% cholesterol and [4] a lard-containing high-fat diet with 45% of the calories mainly from fat with saturated fatty acids (21 g/100 g lard) and a minor fraction of n-6-PUFA (3 g/100 g soybean oil) supplemented with 5% fructose in drinking water

Read more

Summary

Introduction

Apart from being the central organ for maintenance of glucose homeostasis [1], the liver plays a pivotal role in lipid metabolism [2]. Many animal models currently used to study NAFLD fail to reproduce all clinical, biochemical and morphological features of human NASH [7] Genetic obesity models, such as ob/ob or db/db mice, display steatosis and are insulin resistant but appear to be protected from the development of inflammation and fibrosis [8]. When added to a high-fat diet, both fructose [11] and cholesterol [12] as well as increased n-6-polyunsaturated fatty acid (n-6-PUFA) in the fat content [13,14] seem to favor development of liver steatosis and insulin resistance or inflammation and fibrosis. In the current study, three high-fat diets differing in their fatty acid composition as well as cholesterol and fructose content were compared for their impact on weight gain, insulin resistance and development of NASH

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.