Abstract

Several chemical mutagens were found to induce sister chromatid exchanges in Chinese hamster chromosomes. Among them, effects of 4NQO and MMC were very similar to those of UV light in that the exchange frequency increased with increasing dose of chemicals and that it was markedly lowered in the presence of 1 mM caffeine during a post-treatment period. The frequency of proflavin-induced sister chromatid exchanges was also found to be dose dependent, but it was insensitive to the caffeine post-treatment. On the other hand, no appreciable increase was detected in the incidence of sister chromatid exchanges in MNNG-treated cells over a 100-fold range of variation in chemical dose. Caffeine by itself raised the exchange frequency only slightly over a control level. It was found that 4NQO and MMC exerted remarkable delayed effects on the exchange induction, whereas proflavin did not. This seems to suggest that the lesions caused by the former mutagens would be long-lived and repeatedly provoke sister chromatid exchanges. These data imply that there are several possible ways in which the initial DNA lesions ultimately lead to the formation of sister chromatid exchanges, and that at least UV-, 4NQO- and MMC-induced sister chromatid exchanges would have evolved through a caffeine sensitive repair process, probably related to a post-replication repair of DNA damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call