Abstract

The development of procedures to assess genetic damage in fish exposed in situ to point sources of aquatic pollution can be expected to contribute to the evaluation of the role of genotoxic contaminants in epizootic neoplasia in fish populations. To this end methods have been developed for assessing the in vivo induction of chromosomal aberrations (CAs) and sister-chromatid exchanges (SCEs) in tissues of a marine teleost, the oyster toadfish, which may be applicable to other species. An alternative to the solid tissue and squash techniques for metaphase preparation permits the resolution of more than 100 SCEs/metaphase in toadfish kidney cells, which have moderately large chromosomes (0.122 pg DNA/chromosome). The bleeding of toadfish which have been injected with 5-bromodeoxyuridine (BrdUrd) and the subsequent use of hematopoietic tissue (kidney) for cytogenetic analysis was shown to increase the metaphase yield and provide a more predictable production of second-division metaphases required for SCE analysis. With these methods linear dose-dependent increases in chromatid-type exchange CAs and SCEs were obtained with i.p. exposure to ethyl methanesulfonate (EMS) and cyclophosphamide (CP). The doses required to double the observed control SCE frequencies (least effective doses) were 170 mg/kg for EMS and 7.4 mg/kg for CP, which are comparable to those reported for rodent bone marrow assays. A BrdUrd-sensitive site for chromatid breakage was observed on a pair of apparently homologous acrocentric chromosomes for the toadfish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call