Abstract

BackgroundEosinophilic Esophagitis (EoE) is an increasingly common chronic inflammatory disease. The pathological mechanisms underlying EoE are largely unknown.ObjectiveWe sought to understand the mechanisms underlying aeroallergen-induced EoE in Sharpin gene deficient (Sharpin-/-) mice that is prone to inflammatory response.MethodsSharpin-/-mice were exposed with Aspergillus fumigatus and ovalbumin intranasally every alternate day for 4 weeks. Wild type (WT) naïve mice, WT exposed, and un-exposed Sharpin-/- mice were controls. Histopathological analysis was performed by H&E, trichrome and major basic protein staining. Total and specific IgE, IgG, and IgA levels were measured by ELISA and Th2 cytokine and CCL11 chemokine gene expression were determined.ResultsAirborne allergen exposed Sharpin-/- mice showed severe eosinophilic inflammation in the esophagus (p < 0.001), and markedly increased epithelial thickening (p < 0.0001) compared to WT normal controls, whereas airborne allergen exposed WT mice and unexposed Sharpin-/- mice only showed mild eosinophilic inflammation in the esophagus. These exposed Sharpin-/- mice also showed over 7-fold increase in blood eosinophils (p < 0.0001), 60-fold increase in eosinophils in bronchoalveolar lavage fluid (p < 0.0001) and 4-fold increase in eosinophils in the skin (p < 0.0001) compared to normal controls. Surprisingly, exposed Sharpin-/- mice did not show elevation of serum total or antigen-specific IgE levels but reduced total IgA and IgG levels than normal controls There was a marked increase in IL-4, IL-13 and CCL11 gene expression in esophageal tissue (p < 0.001) in exposed Sharpin-/- mice compared to WT normal mice.ConclusionTh2 cytokines and chemokines, but not IgE may play an important pathologic role in aeroallergen-induced EoE. This study may provide insight into new therapeutics for EoE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.