Abstract

Lymphodepletion therapies are increasingly tested for controlling immune damage. One appealing premise for such a therapy is that it may 'reboot' the immune system and restore immune tolerance. However, the tolerogenic potential of lymphodepletion therapies remains controversial. The debate is exemplified by conflicting evidence from the studies of anti-thymocyte globulin (ATG), a prototype of immunodepleting drugs, in particular on whether it induces CD4(+) CD25(+) Foxp3(+) regulatory T (Treg) cells. To understand the impact of ATG on T cells at a clonal level in vivo, we studied the effect of anti-mouse thymocyte globulin (mATG) in a reductionist model in which the T-lymphocyte repertoire consists of a single clone of pathogenic T effector (Teff) cells specific to a physiological self-antigen. The mATG treatment led to peripheral induction of antigen-specific Treg cells from an otherwise monoclonal Teff repertoire, independent of thymic involvement. The de novo induction of Treg cells occurred consistently in local draining lymph nodes, and persistence of induced Treg cells in blood correlated with long-term protection from autoimmune destruction. This study provides in vivo evidence for clonal conversion from a pathogenic self-antigen-specific Teff cell to a Treg cell in the setting of immunodepletion therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.