Abstract
Though bacteria of the radiation-resistant genus Deinococcus have a high resistance to the lethal and mutagenic effects of many DNA-damaging agents, the mechanisms involved in the response of these bacteria to oxidative stress are poorly understood. To investigate antioxidant enzyme responses in Deinococcus spp., the catalase activity produced by these bacteria was measured and the sensitivity of these bacteria to hydrogen peroxide was tested. Deinococcus spp. had higher levels of catalase and were more resistant to hydrogen peroxide than Escherichia coli K12. The high levels of catalase produced by Deinococcus radiodurans were, in part, regulated by growth phase. Cultures of D. radiodurans, when pretreated with sublethal levels of hydrogen peroxide, became relatively resistant to the lethal effects of hydrogen peroxide and exhibited higher levels of catalase than untreated control cultures. These pretreated cells were also resistant to lethality mediated by ultraviolet light and gamma-rays. These results suggest that Deinococcus spp. possess inducible defense mechanism(s) against the deleterious effects of oxidants and ionizing and ultraviolet radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.