Abstract

AbstractThe plant resistance activator acibenzolar‐S‐methyl (BTH), the signalling molecules salicylic acid (SA) and methyl jasmonate (MeJA) were tested by seed treatment for their ability to protect melon seedlings from gummy stem blight and white mould disease caused by the soil‐borne fungal pathogens Didymella bryoniae and Sclerotinia sclerotiorum, respectively. Didymella bryoniae infection on melon seedlings was completely suppressed by MeJA treatment. Necrotic lesions akin hypersensitive response occurred on all inoculated seedlings and prevented pathogen diffusion into healthy tissues. Didymella bryoniae infection was restricted following BTH seed treatment as well, although the percentage of necrotic lesions in comparison with the water soaked lesions was significantly lower than that from MeJA‐induced seedlings. BTH protected melon seedlings against S. sclerotiorum by the occurrence of a high percentage of necrotic lesions. A lower level of resistance was also achieved by MeJA seed treatment. The augmented level of resistance of tissues from BTH and MeJA‐treated seeds was associated with rapid increases in the activity of the pathogenesis‐related proteins chitinase and peroxidase. MeJA also determined a rapid and transient accumulation of lipoxygenase. Moreover, BTH and MeJA treatments determined the differential induction of particular de novo synthesized isoenzymes of these proteins. Results indicate that BTH and MeJA applied to melon seeds may activate on seedlings diverse metabolic pathways leading to the enhancement of resistance against distinct pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call