Abstract
Evidence for the involvement of oxidative stress in 12-O-tetradecanoylphorbol-13-acetate (TPA)-mediated tumor promotion has focused on non-initiated immune cells, tumor cell lines and non-initiated epidermis treated in vivo. This paper reports the effects of TPA on 8-hydroxydeoxyguanosine (8OHdG) formation and the generation of reactive oxygen species (ROS) in cloned initiated mouse epidermal keratinocytes in order to determine whether TPA can directly damage DNA through ROS production within the keratinocytes. Using high performance liquid chromatography with electrochemical detection (HPLC-EC), TPA did not induce 8OHdG formation in DNA of initiated keratinocytes treated under a variety of conditions. The reliability of the HPLC-EC system is demonstrated by (i) the linearity of the 8OHdG standard curve; (ii) the consistency of 8OHdG measurements in calf thymus and cellular DNA; and (iii) the dose-dependent increase in 8OHdG in DNA of initiated keratinocytes treated with UVC in the presence and absence of H2O2. Though not DNA-damaging, TPA induced a 65% increase in ROS (P < 0.05) as detected by luminol-dependent chemiluminescence. These results support a mechanism for the role of oxidative stress in tumor promotion that does not involve direct DNA damage to the keratinocyte target cell. The relationship between ROS, signal transduction and tumor promotion is discussed in light of the above results which is consistent with the role of TPA-induced ROS as second messengers in signal transduction.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.