Abstract

Leukocyte binding to the endothelium is one of the earliest events in the occurrence of atherosclerosis. Leukocyte adhesion molecules involved in this process have not been definitely identified. We have found that treatment of human aortic endothelial cells (HAECs) with minimally modified low-density lipoprotein (MM-LDL) for 24 hours caused a 2- to 3-fold increase of P-selectin protein, with little change in P-selectin surface expression. A 15-minute histamine treatment of cells exposed to MM-LDL caused a 50% to 100% increase in P-selectin surface expression compared with cells not treated with the lipoprotein. This increase resulted in a 2-fold increase in binding of leukocytes to the endothelium. Immunostaining of permeabilized HAECs after MM-LDL treatment also revealed a highly reproducible increase in intracellular P-selectin associated with rod-shaped structures, typical of Weibel-Palade bodies. Oxidized phospholipids were shown to be mainly responsible for the action of MM-LDL. This increased P-selectin expression was associated with MM-LDL-induced cAMP elevation. Like histamine, highly oxidized low-density lipoprotein, especially the oxidized fatty acids, caused immediate redistribution of P-selectin to the cell surface followed by reinternalization. Immunohistochemical staining showed that endothelial cells on human fatty streak lesions expressed increased levels of P-selectin compared with nonlesion areas. These studies suggest that P-selectin may play an important role in early recruitment of mononuclear cells to the subendothelium in human atherosclerosis and that oxidized lipoproteins may contribute to the increased expression of this molecule by increasing intracellular stores and causing redistribution to the cell surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.