Abstract

Certain treatments that damage DNA and/or inhibit replication in E. coli have been reported to induce synthesis of a new protein, termed protein X, in recA+ lexA+ strains. We have examined some of the treatments that might induce protein X and we have, in particular, tested the hypothesis of Gudas and Pardee (1975) that DNA degradation products play an essential role in the induction process. We confirmed that UV irradiation, nalidixic acid treatment, or thymine starvation result in protein X synthesis in wild type strains. However, we found that UV irradiation, unlike nalidixic acid, also induced protein X in recB strains, in which little DNA degradation occurs. Furthermore, we found that the presence of DNA fragments resulting from host-controlled restriction of phage lambda DNA did not affect protein X synthesis. We conclude that no causal relationship exists between the production of DNA fragments and induction of protein X. The presence of the plasmid R46, which confers enhanced mutagenesis and UV resistance on its host, did not affect protein X synthesis. Growth in the presence of 5-bromouracil, which does not result in production of degradation fragments, resulted eventually in a low rate of protein X synthesis. In dnaA mutants, deficient in the initiation of new rounds of replication, UV irradiation induced protein X, again unlike nalidixic acid. Thus, the inhibition of active replication forks is not an essential requirement for protein X induction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.