Abstract

The available evidence suggests that protective immunity to Leishmania is achieved by priming the CD4+ Th1 response. Therefore, we utilised a reverse genetics strategy to generate influenza A viruses to deliver an immunogenic Leishmania peptide. The single, immunodominant Leishmania-specific LACK158–173 CD4+ peptide was engineered into the neuraminidase stalk of H1N1 and H3N2 influenza A viruses. These recombinant viruses were used to vaccinate susceptible BALB/c mice to determine whether the resultant LACK158–173-specific CD4+ T cell responses protected against live L. major infection. We show that vaccination with influenza-LACK158–173 triggers LACK158–173-specific Th1-biased CD4+ T cell responses within an appropriate cytokine milieu (IFN-γ, IL-12), essential for the magnitude and quality of the Th1 response. A single intraperitoneal exposure (non-replicative route of immunisation) to recombinant influenza delivers immunogenic peptides, leading to a marked reduction (2–4 log) in parasite burden, albeit without reduction in lesion size. This correlated with increased numbers of IFN-γ-producing CD4+ T cells in vaccinated mice compared to controls. Importantly, the subsequent prime-boost approach with a serologically distinct strain of influenza (H1N1->H3N2) expressing LACK158–173 led to a marked reduction in both lesion size and parasite burdens in vaccination trials. This protection correlated with high levels of IFN-γ producing cells in the spleen, which were maintained for 6 weeks post-challenge indicating the longevity of this protective effector response. Thus, these experiments show that Leishmania-derived peptides delivered in the context of recombinant influenza viruses are immunogenic in vivo, and warrant investigation of similar vaccine strategies to generate parasite-specific immunity.

Highlights

  • Leishmania protozoan parasites shuttle between the sand fly vector, where they multiply as free promastigotes in the gut lumen, and mammalian hosts where they proliferate as obligatory intracellular amastigotes in mononuclear phagocytes [1]

  • Mice were immunised i.p with virus expressing either the LACK peptide sequence inserted within the influenza neuraminidase (NA) gene (LACKins), or with virus in which the LACK sequence replaces a segment of the gene (LACKrep) (Table S1)

  • Cells were obtained from spleens at the peak of T cell responses (day 10 (d 10) post-priming) and analysed by a number of assays, including Intracellular Cytokine Staining (ICS) for IFN-c and IL-4 (Th1 vs Th2), and ELISA to determine the presence of IFN-c and IL-12 (Th1) versus IL-4 and IL-10 (Th2) in the culture supernatants

Read more

Summary

Introduction

Leishmania protozoan parasites shuttle between the sand fly vector, where they multiply as free promastigotes in the gut lumen, and mammalian hosts where they proliferate as obligatory intracellular amastigotes in mononuclear phagocytes [1]. Leishmaniases constitute a family of conditions, with discrete clinical features ranging from cutaneous lesions to a fatal systemic disease. Sharp rises in distribution and prevalence have been related to environmental changes and to the migration of non-immune people to endemic areas [4]. The former, in particular, has the potential to expand the geographic span of the vector, increasing Leishmania transmission to previously unaffected areas [5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call