Abstract

The potential for inhibitors of nuclear factor-κB (NF-κB) activation to act as inhibitors of muscle protein degradation in cancer cachexia has been evaluated both in vitro and in vivo. Activation of NF-κB is important in the induction of proteasome expression and protein degradation by the tumour factor, proteolysis-inducing factor (PIF), since the cell permeable NF-κB inhibitor SN50 (18 μM) attenuated the expression of 20S proteasome α-subunits, two subunits of the 19S regulator MSS1 and p42, and the ubiquitin-conjugating enzyme, E214k, as well as the decrease in myosin expression in murine myotubes. To assess the potential therapeutic benefit of NF-κB inhibitors on muscle atrophy in cancer cachexia, two potential inhibitors were employed; curcumin (50 μM) and resveratrol (30 μM). Both agents completely attenuated total protein degradation in murine myotubes at all concentrations of PIF, and attenuated the PIF-induced increase in expression of the ubiquitin–proteasome proteolytic pathway, as determined by the ‘chymotrypsin-like’ enzyme activity, proteasome subunits and E214k. However, curcumin (150 and 300 mg kg−1) was ineffective in preventing weight loss and muscle protein degradation in mice bearing the MAC16 tumour, whereas resveratrol (1 mg kg−1) significantly attenuated weight loss and protein degradation in skeletal muscle, and produced a significant reduction in NF-κB DNA-binding activity. The inactivity of curcumin was probably due to a low bioavailability. These results suggest that agents which inhibit nuclear translocation of NF-κB may prove useful for the treatment of muscle wasting in cancer cachexia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call