Abstract

Glucocorticoids significantly affect both proliferation and differentiation of gastric epithelial cells in vivo. Here we examined the mechanism of action of glucocorticoids on the cells in vitro, with special reference to the epithelial-mesenchymal interaction. When 16.5-day fetal rat gastric explants were maintained in organ culture, the epithelial cells began to invaginate into mesenchyme on days 3 to 4, and formed glandular structures on days 5 to 6 in culture. Immunohistochemical analysis with specific antibodies revealed that pepsinogen-synthesizing cells first appeared on day 2, and they increased in number with epithelial morphogenesis to about 20%–30% of total epithelial cells on days 4 to 6, and that these cells were localized at the base of glandular structures in control media. When the explants were treated with hydrocortisone (1 μg/ml), epithelial morphogenesis was mostly suppressed, but epithelial cytodifferentiation was significantly stimulated, indicating that epithelial morphogenesis is not necessary for their cytodifferentiation. In glucocorticoid-treated explants, pepsinogen-synthesizing cells first appeared on day 1, and more than 90% of the cells were positively stained with the antibodies from days 3 to 5 in culture. Biochemical analysis showed that much higher acid protease activity could be detected in glucocorticoid-treated explants than in controls from days 2 to 6 in culture, and analysis by zymography indicated that the synthesis of pepsinogen 1 but not cathepsin E was stimulated by the hormone. Northern blotting analysis showed that the level of pepsinogen 1 mRNA was greatly increased by glucocorticoids. Examination of the effect of the hormone on the epithelial proliferation showed that hydrocortisone (1 μg/ml) significantly inhibited the epithelial growth from days 1 to 3 in culture. To investigate the role of epithelial-mesenchymal interaction in the glucocorticoid-induced differentiation of the gastric epithelial cells, effects of the hormone on the proliferation and differentiation of the cells in the absence of mesenchyme were examined, using a recently established primary culture system. The epithelial cells synthesized cathepsin E but not pepsinogen in cell culture, irrespective of glucocorticoid treatment, and the level of acid protease activity was not affected by the hormone, indicating that mesenchyme is necessary for the hormone to induce pepsinogen gene expression in the epithelial cells. In the cell culture system, glucocorticoids did not inhibit but significantly stimulated epithelial proliferation. This suggests that the hormone indirectly inhibited epithelial proliferation in organ culture, probably via mesenchyme. The mechanism of action of glucocorticoids on the epithelial-mesenchymal interaction in the fetal glandular stomach is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call