Abstract
To characterize the mechanisms by which bacteria in the peanut rhizosphere promote plant growth and suppress Aspergillus niger, the fungus that causes collar rot of peanut. In all, 131 isolates cultured from the peanut rhizosphere were assayed for growth promotion in a seedling germination assay. The most effective isolate, RR18, was identified as Burkholderia sp. by 16S sequencing analysis. RR18 reduced collar rot disease incidence and increased the germination rate and biomass of peanut seeds, and had broad-spectrum antifungal activity. Quantitative analyses showed that RR18 induced long-lasting accumulation of jasmonic acid, salicylic acid and phenols, and triggered the activity of six defence enzymes related to these changes. Comparative proteomic analysis of treated and untreated seedlings revealed a clear induction of four abundant proteins, including a member of the pre-chorismate pathway, a regulator of clathrin-coated vesicles, a transcription factor and a hypothetical protein. Burkholderia sp. RR18 promotes peanut growth and disease resistance, and stably induces two distinct defence pathways associated with systemic resistance. This study demonstrates that a strain of the Burkholderia cepacia complex can elicit both salicylic- and jasmonic-acid-mediated defences, in addition to having numerous other beneficial properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.