Abstract

Anti-swelling conductive hydrogels with simultaneous high tensile strength (>1 MPa) and fast self-recovery are promising candidates for underwater strain sensing, but their preparation remains challenging. Herein, novel anti-swelling conductive nanocomposite hydrogels were fabricated based on poly(acrylamide-co-acrylic acid) (P(AM-co-AA)), polymer-grafted cellulose nanocrystals (CNCs) and Fe3+ ions through a strategy combining nano-reinforcing and multiple physical crosslinking. Due to the presence of interfacial H-bonds, polymer-grafted cellulose nanocrystals played important role in endowing hydrogels with anti-swelling capacity and enhanced mechanical performance. The obtained nanocomposite hydrogels exhibited relatively low swelling ratio (2.9–3.3 g/g), high tensile strength (>1.5 MPa), fast self-recovery (86 % recovery of hysteresis within 5 min) and conductivities of 0.0534–0.0593 S/m. The combination of excellent tensile properties and conductivity endowed the hydrogel-based strain sensors with good sensitivity (GF ≈ 0.8) and reliable cycling repeatability in 0–100 % strain range. Notably, the nanocomposite hydrogels can maintain their mechanical and sensing performance after soaking in water for 14 days, making them applicable for human motion detection both in air and underwater. Hence, this work provided a facile method to construct highly robust and anti-swelling CNC-reinforced conductive hydrogels, which have potential applications in underwater strain sensing and beyond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.