Abstract

Therapies targeted to the immune checkpoint mediated by PD-1 and PD-L1 show antitumor activity in a subset of patients with non-small cell lung cancer (NSCLC). We have now examined PD-L1 expression and its regulation in NSCLC positive for the EML4-ALK fusion gene. The expression of PD-L1 at the protein and mRNA levels in NSCLC cell lines was examined by flow cytometry and by reverse transcription and real-time PCR analysis, respectively. The expression of PD-L1 in 134 surgically resected NSCLC specimens was evaluated by immunohistochemical analysis. The PD-L1 expression level was higher in NSCLC cell lines positive for EML4-ALK than in those negative for the fusion gene. Forced expression of EML4-ALK in Ba/F3 cells markedly increased PD-L1 expression, whereas endogenous PD-L1 expression in EML4-ALK-positive NSCLC cells was attenuated by treatment with the specific ALK inhibitor alectinib or by RNAi with ALK siRNAs. Furthermore, expression of PD-L1 was downregulated by inhibitors of the MEK-ERK and PI3K-AKT signaling pathways in NSCLC cells positive for either EML4-ALK or activating mutations of the EGFR. Finally, the expression level of PD-L1 was positively associated with the presence of EML4-ALK in NSCLC specimens. Our findings that both EML4-ALK and mutant EGFR upregulate PD-L1 by activating PI3K-AKT and MEK-ERK signaling pathways in NSCLC reveal a direct link between oncogenic drivers and PD-L1 expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.