Abstract

Purpose The novelty in flower color or inflorescence form is recognized as a valuable trait in Chrysanthemum – a potential commercial flower crop with significant worth in global cut flower trade. This study was conducted to irradiate white and orange flowered cultivars of Chrysanthemum with an objective to identify and isolate desirable types representing novelty in flower color and inflorescence form from the irradiated populations. The terminal rooted cuttings of Chrysanthemum exposed to γ-irradiation at 10 or 15 Gy doses were found effective for inducing novel flower color variants in cultivars Thiching Queen and Purnima. The mutant progeny evolved with novel inflorescence traits of these cultivars will enrich the existing germplasm of Chrysanthemum for further utilization in breeding programs. Materials and methods Two standard type Chrysanthemum cultivars, Thiching Queen and Purnima were exposed to varied doses of γ-rays (0, 5, 10, 15, and 20 Gy) using Cobalt 60 (60Co) as irradiation source for treating rooted cuttings. The irradiated mutant population was evaluated for likely variation in various vegetative and flowering characters compared to non-irradiated (control) plants. Results In Chrysanthemum cultivars Thiching Queen, seven and ‘in Purnima’, two flower color variants were isolated from the irradiated populations that were reportedly novel in color and desirable for commercial aspect. The leaf abnormalities were observed in mutant populations exhibiting variation in flower color, shape, and size of leaves. Certain floral abnormalities were also observed in inflorescence that reportedly progressed with increase in dosage of γ-rays irradiation. Conclusions This study developed a gamma ray (60Co) induced mutagenesis protocol with potential application to develop novel and desirable mutants in Chrysanthemum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call