Abstract

Intravenous fructose-1,6-diphosphate (FDP) is reported to reverse shock and improves survival in animals given systemic lipopolysaccharide (LPS), although the mechanism is incompletely understood. Since endotoxin-related shock is associated with increased nitric oxide (NO) production, LPS-stimulated macrophages were treated with FDP, and the NO metabolite, nitrite, was measured 24 h later. Treatment of LPS-stimulated macrophages with 1, 5, or 10 mM FDP caused a dose-dependent reduction in mRNA expression for inducible NO synthase by Northern analysis and decreased the micromolar concentrations of nitrite produced by 17, 42, and 68%, respectively. Neither fructose nor sodium phosphate had these effects in LPS-exposed macrophages. Electrophoretic mobility shift assays revealed that FDP did not inhibit LPS-mediated activation of nuclear factor kappa B. Viability analysis showed that the FDP effect was not caused by cytotoxicity. Overall, these results suggest that fructose-1,6-diphosphate, a glycolytic intermediate with potential clinical use, may mitigate the adverse effects of LPS by regulating the generation of NO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.