Abstract
The outbreak of SARS-CoV-2 infections had led to the COVID-19 pandemic which has a significant impact on global public health and the economy. The spike (S) protein of SARS-CoV-2 contains the receptor binding domain (RBD) which binds to human angiotensin-converting enzyme 2 receptor. Numerous RBD-based vaccines have been developed and recently focused on the induction of neutralizing antibodies against the immune evasive Omicron BQ.1.1 and XBB.1.5 subvariants. In this preclinical study, we reported the use of a direct fusion of the type IIb Escherichia coli heat-labile enterotoxin A subunit with SARS CoV-2 RBD protein (RBD-LTA) as an intranasal vaccine candidate. The results showed that intranasal immunization with the RBD-LTA fusion protein in BALB/c mice elicited potent neutralizing antibodies against the Wuhan-Hu-1 and several SARS-CoV-2 variants as well as the production of IgA antibodies in bronchoalveolar lavage fluids (BALFs). Furthermore, the heterologous RBD representing the same strains used in the bivalent mRNA vaccine were used as a second-dose RBD-LTA/RBD protein booster after bivalent mRNA vaccination. The results showed that the neutralizing antibody titers elicited by the intranasal bivalent RBD-LTA/RBD protein booster were similar to the intramuscular bivalent mRNA booster, but the RBD-specific IgA titers in sera and BALFs significantly increased. Overall, this preclinical study suggests that the RBD-LTA fusion protein could be a promising candidate as a mucosal booster COVID-19 vaccine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.