Abstract

Tuberculosis (TB) remains a tremendous global health problem, with 1/4 of the world’s population infected and causing > 1 million deaths annually. Intradermal Bacillus Calmette-Guérin (BCG) vaccine given during infancy protects against severe forms of acute disease but does not prevent chronic infection or development of pulmonary TB. TB vaccine mucosal targeting potentially could induce mucosal resident immune cells with increased protective capacity against pulmonary infection and disease. Sublingual (SL) administration of vaccines may be an optimal mucosal delivery platform based on the high absorptive capacity of this mucosal surface, the extensive lymphoid tissue, and published preclinical studies demonstrating efficacy of SL vaccination against other pathogens. To this end, we performed preliminary testing of sublingual TB vaccines. Vaccination of mice with SL BCG elicited potent mycobacteria-specific T cell responses which persisted 16 weeks post-immunization. The magnitudes of the T cell responses were similarly induced after sublingual, intranasal, and subcutaneous BCG vaccination. Interestingly, serum mycobacteria-specific antibody responses and systemic recovery of BCG post-vaccination were lower after SL BCG compared with systemic BCG immunization. However, more importantly, SL BCG vaccinated mice were significantly protected against an aerosolized virulent M. tuberculosis challenge (P < 0.0001 compared to unvaccinated mice). Furthermore, this protection was long-lived, persisting for 16 weeks with >1 log CFU reduction compared with naïve challenged mice in both lungs and spleens (P < 0.0001 and P < 0.0028, respectively). These exciting results provide strong support for further studies exploring the mechanisms of protective immunity induced by sublingual BCG vaccination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.