Abstract

Bile reflux contributes to the development of esophageal injury and neoplasia. The mucin 5AC (MUC5AC) is absent in the normal squamous epithelium of the esophagus but is strongly expressed in Barrett esophagus (BE). The objective of this study was to determine whether and how bile acids influence the expression of MUC5AC in the esophagus. MUC5AC expression was studied by immunohistochemistry and immunoblotting in human tissues, in tissues from a rat model of BE, and in SKGT-4 cultured esophageal epithelial cells. MUC5AC transcription was studied by real-time polymerase chain reaction and transient transfection assays. MUC5AC was absent from normal squamous epithelium but was present in 100% of Barrett specimens and in 61.5% of human esophageal adenocarcinoma tissues that were examined. MUC5AC protein expression was induced to a greater degree by conjugated bile acids than by unconjugated bile acids, and this occurred at the transcriptional level. In the rat reflux model, MUC5AC mucin was expressed abundantly in tissues of BE stimulated by duodenoesophageal reflux. Conjugated bile acids induced AKT phosphorylation in SKGT-4 cells but had no effect on extracellular signal-regulated protein kinases 1 and 2, c-Jun N-terminal kinase, or protein-38 kinase phosphorylation. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and a dominant-negative protein kinase C (AKT) construct prevented the induction of MUC5AC by conjugated bile acids. Transactivation of AP-1 by conjugated bile acids coincided with MUC5AC induction, and cotransfection with a dominant-negative activator protein-1 (AP-1) vector decreased MUC5AC transcription and its induction. Conjugated bile acids in the bile refluxate contribute to MUC5AC induction in the esophagus. This occurs at the level of transcription and involves activation of the PI3K/AKT/AP-1 pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call