Abstract

When located near biological barriers, oscillating microbubbles may increase cell membrane permeability, allowing for drug and gene internalization. Experimental observations suggest that the temporary permeabilization of these barriers may be due to shear stress that is exerted on cell tissues by cavitation microstreaming. Cavitation microstreaming is the generation of vortex flows which arise around oscillating ultrasound microbubbles. To produce such liquid flows, bubble oscillations must deviate from purely spherical oscillations and include either a translational instability or shape modes. Experimental studies of bubble-induced flows and shear stress on nearby surfaces are often restricted in their scope due to the difficulty of capturing shape deformations of microbubbles in a stable and controllable manner. We describe the design of an acoustic levitation chamber for the study of symmetry-controlled nonspherical oscillations. Such control is performed by using a coalescence technique between two approaching bubbles in a sufficiently intense ultrasound field. The control of nonspherical oscillations opens the way to a controlled cavitation microstreaming of a free surface-oscillating microbubble. High-frame rate cameras allow investigating quasi-simultaneously the nonspherical bubble dynamics at the acoustic timescale and the liquid flow at a lower timescale. It is shown that a large variety of fluid patterns may be obtained and that they are correlated to the modal content of the bubble interface. We demonstrate that even the high-order shape modes can create large-distance fluid patterns if the interface dynamics contain several modes, highlighting the potential of nonspherical oscillations for targeted and localized drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call